Enzyme-Based Scissors Target Cancer Cell Defenses: Researchers at Stanford University Reveal

The biomolecule's ability to degrade mucins on cancer cells represents a significant advancement in the fight against cancer, offering new avenues for effective and targeted treatment options.

In a groundbreaking discovery, researchers at Stanford University have engineered a remarkable biomolecule that could revolutionize cancer treatment. This newly developed biomolecule acts like a pair of scissors, specifically cutting away sugar-coated proteins known as mucins from cancer cells. By stripping these mucins, the biomolecule exposes cancer cells to the immune system, potentially paving the way for more effective cancer therapies.

 

Mucins are normally beneficial proteins coated with sugar molecules, serving as the body's defense against physical harm and pathogens. However, cancer cells have found a way to exploit mucins, using them as a shield against the immune system. Removing mucins from cancer cells could be a potential strategy for cancer therapy. However, since mucins are present in various forms throughout the body, targeting them without precision might have unintended consequences.

 

The solution devised by the Stanford-led research team involves creating an enzyme-based scissors. This unique biomolecule combines a mucin-cutting enzyme called mucinase with a cancer-cell-targeting nanobody, a fragment of an antibody. Together, these components selectively target and remove mucins from specific cancer cells.

 

The study's results, published in Nature Biotechnology, demonstrated the biomolecule's potential. In lab-grown human cancer cells and simulated mouse studies of breast and lung cancer, the biomolecule treatment significantly reduced tumor growth and improved survival rates. This breakthrough has far-reaching implications, as mucins are associated with a range of diseases beyond cancer, including respiratory conditions and viruses.

 

Senior author Carolyn Bertozzi, a respected figure in the field, explained the significance of their findings. "We found that we could target this mucinase to cancer cells, use it to remove mucins from those cancer cells, and there was a therapeutic benefit," she stated.

 

The co-lead author of the study, Gabrielle Tender, along with former members of Bertozzi's lab, Kayvon Pedram and D. Judy Shon, collaborated to develop this innovative approach.

 

Mucins, while usually beneficial, can contribute to cancer progression when misused by cancer cells. One function involves helping cancer cells survive in environments where they are not firmly attached. Additionally, cancer cells can employ mucins to bind to immune system checkpoint receptors, avoiding detection and immune response.

 

The biomolecule designed by the research team is a fusion of two parts. The first part, the mucinase, cleaves mucins, while the second part, a cancer-specific nanobody, targets cancer cells. This nanobody guides the mucinase to cancer cells, ensuring that it only removes mucins from these cells.

 

The study's success brings us one step closer to potential new cancer therapies. The next challenge is to develop a human-derived mucinase, as the current version is not human-derived and may trigger unwanted immune responses.

While more research is needed before this approach can be implemented in clinical settings, this breakthrough holds immense promise. The biomolecule's ability to degrade mucins on cancer cells represents a significant advancement in the fight against cancer, offering new avenues for effective and targeted treatment options.

Tags : #StanfordUniversity #Mucins #biomolecule #advancement #NatureBiotechnology

About the Author


Sunny Parayan

Hey there! I'm Sunny, a passionate writer with a strong interest in the healthcare domain! When I'm not typing on my keyboard, I watch shows and listen to music. I hope that through my work, I can make a positive impact on people's lives by helping them live happier and healthier.

View Profile

Related Stories

Loading Please wait...

-Advertisements-




Trending Now

Scientists in Moscow Develop Fetal Phantom for Obstetric UltrasoundNovember 19, 2024
International Men’s Day: A Celebration of Strength, Vulnerability, and ChangeNovember 19, 2024
The Bloody Truth: Why Menstruation Is Still a Taboo in Indian SchoolsNovember 19, 2024
Toxic Air, Fragile Hearts: The Hidden Cost of Pollution on Heart Failure PatientsNovember 19, 2024
Government of Telangana Hosts the AI in Healthcare Summit – Road to BioAsia 2025November 18, 2024
In yet another groundbreaking medical milestone, Sarvodaya Hospital successfully performs India’s youngest cochlear implant on a 5- month old babyNovember 18, 2024
Sightsavers India in collaboration with AbbVie Therapeutics India Private Limited Hosted the 4th State-Level Consultation on ‘Prevention of Visual Impairment Caused by Glaucoma’November 16, 2024
Is Your Saree Hurting You? How Tight Waist Petticoats Could Trigger Skin CancerNovember 16, 2024
10 New-born Lives Lost: The Jhansi Hospital Fire That Shook India’s ConscienceNovember 16, 2024
Streax introduces revolutionary Shampoo Hair Colour in South India at accessible price point.November 15, 2024
The Silent Killer in Your Genes: Can Splicing Errors Unlock New Cancer Cures?November 15, 2024
Stress on a Schedule: What Your Gut Bacteria Know That You Don’tNovember 15, 2024
A Preventable Catastrophe: Why Are Children Still Dying from Measles?November 15, 2024
The University of Tasmania invites applications for Master of Marine and Antarctic ScienceNovember 14, 2024
ICMR’s Bold Bet: Can India’s Scientists Deliver World-First Health Breakthroughs?November 14, 2024
The Dark Reality Behind India’s Ayushman Bharat: Profits Before Patients?November 14, 2024
Not a Fan of Exercise? Here’s How Few Steps You Actually Need for Better HealthNovember 14, 2024
Shiprocket launches AI Powered Shiprocket Copilot to empower a Self-Reliant Digital Future for over 1,00,000+ Indian MSMEsNovember 13, 2024
AIIMS Darbhanga and More: Can PM Modi’s 12,000 Crore Investment Turn Bihar into India’s Next Growth Engine?November 13, 2024
Self-Made Survivor: How a Virologist Battled Breast Cancer with Her Own Lab-Grown VirusesNovember 13, 2024